PMM U.S.S*R.,Vol.44,py.760-763 0021-8928/81/6 0760 $7.50/0
Copyright. Pergamon Press Ltd.l981.Printed in U.K.

THREE-DIMENSIONAL KIRSCH PROBLEM FOR A TRANSTROPIC PLATE”

V. A. SHALDYRVAN

malitative and quantitative study of the wvoncentration of stresses in the Kirsch
problem for isotropic plates is carried out in the three-dimeénsional formulation use
ing the superposition method /1/ and the method of homogeneous solutions /2/. An
asymptotic method of solving the Kirsch problem for transtropic plates is given in
/3/. . Below the problem in question is sclved for the transtropic bodies of finits
dimensions.
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Let Ve {i<r<Co, 00 2n, [{{< i} be a region occupied by a plate made of trans-
tropic material. The material is characterized by the elastic parameters v, v, = v,E/E,.
5o = G/G; {v;, E., G, denoting the Poisson's ratio, Young's modulus and shear modulus in  the
planes perpendicular to the isotropy planes). We assume that the end faces Sy of the plate
and its side surface {1 are free of external loads and that at infinity the plate is under un-
iaxial tension, i.e.

Opge = PL, r= 0,1, .. oy =0, i=j5%3 ‘“

We write the state of stress of the plate in the form of a superposition o©f the basic
stress (v,,°) appearing in a solid plate under the action of the load indicated, and the per~
turbed stress (o,*) appearing in the plate with a cavity, the side surface of which is acted
upon by the following forces:

g = —0Ong (=7 0,0 ohe =0 3
The basic state of stress has the form /3/

O o= (1 + CO8 2007, Org = 5= TP 5in 20, Oap == 5-(1 — 08 20)2¥, 0% = ogg = ofg =0 (3)

We obtain for the perturbed state of stress a boundary value problem of the theory of
alasticity with boundary conditions (2}, in which the right-hand sides are given by the rela-

tions {(3). Solution of this problem reduces to finding the Lur'e-Lekhnitskii functions F,
®,, ¥, £from the boundary conditions at the side surface /2/

141
iy

9(0) + 077 (@) + F©) + YeAsa (Por ¥o) = - F10(0): (7 ) e T O — Aso (O ¥) =fr.mi  Asa (D) Tp) =0

where
< R - —mw—— A wen SR i Rvixicd foy WD FE-41
F=RelZIe@)+ rio)l, ¥ @) =4dy, VVF = U, YO, = (07" Wy Y Ip =1{Vp J Xp Vos
We write the general solution of the system (3} satisfying the conditions of the boundedness
of the stresses at infinity, in the form
b by

@ (2) = a/z, Wy () 0) = cop*ko (vo*7) + Cpp™hy (vp*r) cos 20, W (2) =+, Dy (r, 8) = biiks (8 *r) sin 20 (6)

2
Substituting (6} inteo the boundary conditions (4) we obtain an infinite system of linear alge-

braic equations for the arbitrary constants g, by, by, tap==Chalk, (vu*), Box = bop*/k, (8,%). We
write it in its final form as follows:
\ d - - o= {7
RQZ Homp = AmpPo” (¥p*)] Cop ==~ - Eal, Regrﬂvppﬂ (1p*)cop=0 (mm=17,... )
»

. P XY e e s 1 4- . . e X1, . AT iy N - Py (8)
bgw_‘é—{ﬁor'l-'ﬂéz“[hp-nnpf’o (‘r‘p“copj, 503“"‘4“1”‘“}"“32‘\‘0;7‘1‘“"011*‘% \Vp7 )} Cap =m0 o v Lo
r P

- - - X N P L, G8% s , savm ose —s8 @y L Y e . AP~ £ WNE L P o
3§3_za1_ﬁebnw§gi‘ (vp®) cop=-Ev, m;)» a3 = (= ™ My (6%} m-——}__}\ms% impl¥e (Vp Wetpmm —Ep
?
¥
96A%n, s avm T e we s AT esa ol T A Py o :_.—LE’
(mn)t ay - {— 1) L"‘z“\om o g \Om )J’J’Sm"r“d—"mp iy \Vp ) C2p 5 Em
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(=178
2 FmpPa™ (Vp*) Cap — —-A-;o—'-"- by =0
P

where we use the notation adopted in the monograph /2/.
Having determined from (7), (8), the constants introduced,we find the stresses in the

plate using the formulas
0y = oy* + 0y (9

where the gquantities accompanied by an asterisk have the form

- obo=tt + cos20 (e [ L _ 20 (L) et V) P 0) My (B0 Bk (65%r) + (10)
- 3

Y1 + @ N5 ek (ve*)}
¥

-},» of;=2Re z t, (L) cigha (vp*r)cos 28 (k, p=1, )
»

In investigating the concentration of the stresses appearing in the plate in guestion,
we use the values of the stresses on Q. In particular, for the normal stresses we have

o Ooolo =404 1) — B (A, 2) 0320, 5-0xtla=c(h, 1) cos20, A(hDmg-t¥—by, ¢ D=2Re Y tQhesy (11
b4

B D=0+ 2 (=)t} Pr O MY 0% b+ 30— 20 Y 5y @ = OO N5 (13" 3

r

Expressions (11) imply that the greatest normal stresses appear in the cross-section 6 =
n/2. Let r=20 ., Then the system (7) yields ¢pp =0, by = —P /2. Table 1 shows the max-
imum values of the normal stresses for this case, for cadmium (Cd) and zinc (Zn) plates, for
various values of the relative thickness \A. Comparison with the corresponding values for
the isotropic plates /2/ shows that the character of the stress distribution across the thick-
ness and along the circumference is the same for the transtropic and the isotropic plates.The
greatest discrepancy in the values of the peripheral stresses is observed near the plane edg-
es, and it can reach 20%. The stresses op appearing in the transtropic plates are almost
twice as large as those in the isotropic plates. Consequently, the stress field in transtro-
pic plates has a more pronounced three-dimensional character than that in the isotropic plates.
It follows that if the anisotropy of the material is to be taken into account, we must use the
three-dimensional sclution when computing the stress concentration.

Table 1
OoojQ ﬂgglg
< A | a=s At Ao d
ca 1 Zn { cd cd Zn ca
0.2 3.843 3.518 3.084 0.418 1,538 0.538
0.4 3.205 3.415 3.108 (1,368 (1,455 0.537
0.6 3.192 3.250 3.150 0,297 0,341 0.522
0.8 2.967 2.947 3.164 0,142 (.189 01,435
1.0 2.385 2.247 2.167 0.4.40~8 0.8.10-6 0.2.40-¢

If the plate is subjected to a tensile force @ acting in the direction of the axis

09 (Onne = @) then the solution of the problem of the state of stress in such a plate is given

by the formulas (10), (1l) where P is replaced by Q and § by 64 n/2. In particular, for
the stresses near the surface @ we have

1 "
o Oelo=A(D + B L) cos 26, %U;t o == {3, £} cOs 20

Superimposing the solutions in guestion corresponding to the loads Op.= PI¥ and Ope =
Qr¥, we obtain a solution for the case when an unbounded plate is subjected to the tensile



762 V. A. Shaldyrvan

forces PL¥ and Q¥ acting, respectively, along and across the OF -axis. In this case we
have
Sple =P+ DA D — (P~ B3 Deos®, o lo= (P — Q)L &

&,

o
Lo

cos 28

The system (8} vields in this case &y = by = gp == by, == 0. An analogous problem was solved in
/4/.

Table Z gives the value for the stresses (6;*} of the perturbed state for Qifferent
quantities of the eigenfunctions left in the solution. The data are obtained for a {d plate
acted upon by the lead on*jp= —P® and A=1. The Table shows how well the boundary condi-
tions are satisfied (the last column corresponds to the stresses given in advance), and how
rapidly the approximate solutions converge in the Bubnov——Galerkin method. Already for m =38
the stress values can be assumed exact. Even at m =3 the boundary gonditions for the plates
with A=1 and A=4 are satisfied with an error not exceeding 1.5% of the loads given.When

=04, m=3 yields results which are practically exact. The convergence becomes lsss rapid
with the incressing value of the index r of variation of the lcad. A similar pattern is ob-
served when the problems are scolved for a Zn plate. The character of variation in the per-
turbed state of stress on moving away from the edge into the middle of the plate is of
considerable interest.

Table 2
oy 2 o 5 1 2 ‘gim
0.2 —0.0380 | —0.0396 | ~0.08999 | —0.040008 | —0.04
e 0.8 —0,3623 | —0.3596 | -0 55097 | —0.360008 | —0.36
o2 0.8 —0.6256 | —0.640¢ | —0.83998 [ —0 630007 | —0.64
1 —4.0430 | —1.6085 | —4.00432 | —1.000044 § ~t
8.2 86 i@ 1 0.2 o
105340 0.8 —18 & 12 @
5.8 —310 35 8 2.3 o
0.2 0,347 0.3178 0,31780 | 0.31786
. 0.4 0.3645 0.3647 0.36689 | 0.38485
Saj2 0.8 0.4380 0.4379 6,43803 | 0.43758
0.8 0.529% 0.5315 0.53182 | 0.53t77
1 0.6548 0.6549 0.88481 | 0.65400

Table 3 gives the corresponding data for a I plate under the load o *ip= — 2P {the
stresses o,,” are given in the numerartor, and og* in the denominator). Analysis of the
data given in the Table uncovers a distinctive feature in the stress distribution in the plate
at various values of the thickness, which implies that the peripheral stresses concentrate
near the surface and decay sufficiently rapidly on moving towards the inside of the plate.

Table 3
> L4 fwmB 22 0.4 4.6 4.8 1
0 —0.040 | —0.160 () 360 —0.640 —1
375 G353 N o 0.537 0. 662
16 | =081 1 o.071| —0.008 -, 138 —0. 180 —0.218
0.5 : TUR | TOI® | OB 3 RE] 55
5 4 | —0.082 1 —0.081 | —0.080 ). O87 —0.054 .05
= ; X T8 | OO TR | TO.0E
4 0 0040 | —0.160 e}, 360 —0,640 —1
0,259 | " 0.280 0.342 0,443 0.582 0.768
0.016 | —0.008 | —0.055 ~l), 139 —0.243 —0,348
! 1.8 | 5oay | o0 | To.0% ; oI5 | 0B
5o | =0.0321 0,033 —0.033 (1,038 —0.032 0,029
Rl B i 1 e 4 xS TR 7050
& —0.040 ] —0.160 ), 360 —0, 840 -1
4 4.8 | £.615 | ~D.0F4 ] —0.054 e}, 043 —0.252 —0.399
' R T 0243 G.350
4 0.007 0,003 0.00 v, 034 —0.040 —0,058
0.¢04 [INE 0.U11 TG .03 U040
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It should be noted that in the case when the external loads vary across the thickness,
the stress distribution pattern in an isotropic plate is basically different from that in a
transtropic plate. Thus, if in the isotropic plate the largest compressive stresses act on
the middle plane of the plate, then in the ¢4 and 2zn plates the maximum is reached at the
edge of the plate. From this it follows that inclusion of the anisotropy leads to a complet-
ely new result.
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